The Center for Security Technologies
Technology Review

Ronald S. Indeck, Director
Joseph A. O’Sullivan, Associate director
Robert Pless, Assistant Director
Outline

• WUSTL
• CST Scope
• Intellectual Research Thrusts
• Integrated Demonstration Testbeds
• CST Collaborations
Washington University
Center for Security Technologies

• Washington University:
 - USNWR: 12, top ten in endowment
 - 8 Schools: Medical, GWBSSW top 3
 - SEAS: 6 departments including ESE and CSE

• CST
 - Interdisciplinary Academic Research Center
 - Formed early 2002
 - Foundations

• Funding
 - Individual investigator, groups, and Center level

• External Collaboration
CST Mission

To advance research in basic science, mathematics, and engineering in those areas which can most directly improve security including:

- physical aspects of security (intrusion detection, biological and chemical substance identification)
- information aspects of security (networking, searching of massive databases, and information theory)
- law
- economics
- public policy
CST Coverage

- Broad spectrum of applications
 - Not just focused on information assurance
 - 40 faculty from five schools
 - Integrated research testbeds

- Security is not only terrorism
 - A variety of ‘attacks’ including natural disasters

- Synergy between technology and policy
 - Privacy/public policy as ‘design criteria’
Faculty Breadth

14 Electrical and Systems Engineering
13 Computer Science and Engineering
5 Arts and Science (Chem, Math, EPS, Phil, Econ)
1 Medicine
5 Law
2 Social Work
Technology Expertise and Enablers
devices, design, analysis, computation, electronics, systems ...

- Cheap, even disposable sensors
- Inexpensive mass data storage
- Fundamental advances in imaging science
- Reconfigurable, fast electronics
- Affordable, rapid computational processing
- Economical, pervasive networking, including wireless
Application: Fingerprints

• Court ruling
 - fingerprint recognition not a science
 - Need new scientific foundations for biometrics-based recognition and object recognition

• Consider complete security system
 - optical or ultrasound image
 - computational algorithms
 - hardware implementation
 - management/transmission of data
 - performance prediction
S & T Intellectual Thrusts

- Sensors: Indeck
- Advanced Electronic Systems: Lockwood
- Information-Theoretic Signal and Image Processing: Snyder
- Recognition Theory and Systems: O’Sullivan
- Vision for Security: Pless
- Distributed and Mobile Systems: Gill
- Network and Information Security: Hegde
- Detection, Isolation, and Accommodation of Faults: Isidori
- Privacy, Public Policy, and Ethics: Kieff
Sensors

- Optical Cameras: custom, high-end, off-the-shelf, frame-rates
- Infrared, Multispectral, Hyperspectral Sensors
- Biological and Chemical Sensors
- X-ray, ultrasound, MRI
- Custom sensors such as fingerprint, retinal
- Magnetic
- Radar
- Active, passive

Indeck, Brownstein, Fritts, Fuhrmann, Hayes, O’Sullivan, Pless, Smith, Snyder

Center for Security Technologies
Washington University in St. Louis
Advanced Electronic Systems

- Reconfigurable electronics
- Embedded processing
- Signal processing and VLSI design
- Novel electronics including random number generation

Lockwood, Chamberlain, Franklin, Fritts, Morley, Richard, Rode, Shrauner
Information-Theoretic Signal and Image Processing

- Signal and image processing, deterministic and stochastic
- Data modeling, algorithm development, performance prediction
- Signal and information representation, compression, coding

Snyder, Fuhrmann, Grimm, Hegde, Mukai, O'Sullivan, Pless, Wickerhauser, Xu
Recognition Theory and Systems

- Biometrics-based recognition including face, fingerprint, retinal, DNA, etc.
- Physical signature recognition including magnetic signatures
- Fast database searching and recognition system implementation
- Data and model compression, signal representation
- System implementation considerations: processors, computation, communication, database design
- Data mining, intelligence extraction, situational awareness

O'Sullivan, Byrnes, Chamberlain, Franklin, Indeck, Martin, Grimm, Pless, Wickerhauser, Washington University in St. Louis
Vision for Security

- 3D Scene modeling
 - known or constrained scenes, unknown scenes
 - Texture, lighting, BRDF
 - Deterministic, stochastic
 - Natural scenery, man-made objects, known objects
- Scene and camera motion, known and unknown
- 3D registration
- Smart cameras, embedded processing
- Optical, infrared, hyperspectral, radar imaging systems

Pless, Fuhrmann, Fritts, Ghosh, Grimm, O’Sullivan, Smart, Smith, Snyder
Smart Borders – Smart Cameras
Privacy, Public Policy, and Ethics

- Societal issues, security-privacy perception and reality
- Economic issues, cost-benefit analysis
- Legal issues
- Technological solutions to privacy issues
- Facilitate discourse on technology and its implications
- Interact together as a group through common queries
- Bilateral interactions with technologists regarding technological enablers and systems design.
Selected Center Projects

- Forensics
- Sensing (optical, HSI)
- Object identification
- Voice/fingerprint recognition
- Airport screening
- Satellite imagery, vision
- Encryption/data security
- Network security
- Water/food supply
Engineering Demonstration Testbeds

- Connect all parts
- End-end demonstration
 - Biometrics/Physics-Based Recognition Systems Morley
 - Searching Massive Databases for Critical Information Franklin
 - Networks of Video Cameras Pless
 - High Speed Network Security Hegde
 - Security of the Food and Water Supply Smith
 ➢ Roles of Privacy and Policy Kieff
Humanoids have produced 12 Exabytes over the past ~30,000 years (12,000,000,000,000,000,000 Bytes)
We will generate next 12 Exabytes in just over a year!
US intelligence collects data equaling the printed collection of the US library every day!
- email, telephone, satellite, . . .
To find what we’re looking for most effectively . . .

. . . push the request to the data!
Intelligent Searching of Massive Databases

Fast, inexpensive searches for changing databases

- 200 times faster than conventional searches
- Scalable, using conventional drives
- Search need not be exact

Wide applicability

- Intelligence
- Images
- Genomics

DataSearch Systems, Inc.

CST
Center for Security Technologies

IBM
Washington University in St. Louis
The Case of Maury Travis

Suspect in over 20 murders
Sent map to Post-Dispatch
Contacted Expedia
ID’ed IP address
Contacted MCI-WorldCom
Apprehended suspect

Per Sgt. Muffler
Data Transmission

- 120 TBytes/sec internet peak rate
- 120 PBytes/month Internet
- 100 PBytes/month telephone
Network Watchman

- Electronic postmen
 - direct packets to destination via headers
- Secure network
 - search headers
 - view payload
 - copy/redirect/stop packets
Networks of Distributed Sensors

- Existing or future sensor networks
- Networks of sensors
 - **Waterway**: detect pollution, bioterrorism, chemical spills
 - **Building**: fire, temperature, other agents
 - **Cameras**: dynamically reconfigure
 - Communicate problems, identify source
 - Real-time response to evolving situations

BECS Engineering
Digital Array Scanning Interferometer (DASI)

Food Supply, Mail, Currency

- **Diagram**: Diagram showing the components of the DASI system, including collimator lens, 45° polarizers, reimaging lens, Wollaston prism, and spatial interferogram (falls on 2D FPA).

- **2D Scene at Wavelength λ₀**: Diagram illustrating a 2D scene at wavelength λ₀, showing the radiant spectrum at position (a,b).

- **Scene Cube**: Conceptual representation of the scene cube, indicating polarization, propagation effects, and time evolution.

- **Logos**:
 - MEDECO
 - FDA

- **Images**: Images showing various scenes from the DASI system.
CST Funding/Collaborations

- NSF, DoEd
- DARPA, ARO, ONR
- CIA, FBI, NSA, Secret Service
- NIST – ATP
- Battelle
- Boeing, CSFB, Monsanto, SBC . . .
CST External Advisory Board

Mr. Earle Harbison (retired President and COO, Monsanto), Chair
Dr. Massoud Amin (Director of Infrastructure Security, EPRI)
Dr. Allen Atkins (VP, Boeing)
Dr. Tony Cantu (Section Director, US Secret Service)
Prof. Jerry Cox (Senior Professor, Washington University)
Col. Tim Daniel (Director, Missouri Office of Homeland Security)
Mr. Will Eatherton (Chief Architect, Cisco)
Dr. Mark Kryder (CTO, Seagate Technologies)
Mr. Jerry McElhatton (President, GTO MasterCard International)
Dr. Craig Mundie (CTO, Microsoft)
Dr. Sharon Nunes (Director, IBM)
Mr. Joe Leonelli (Director, Battelle)
Ms. Jan Newton (President TX, SBC)
Gen. Charles Robertson, Jr. (Com. in Chief, Air Mobility Command)
Dr. Don Ross (Chairman, Ross and Baruzzini: Cernium)
Hon. William Webster (retired Director, CIA and FBI)
Center for Security Technologies

- Critical mass in security technologies
- Many complementary projects
- Widespread applications
- Fundamental scientific issues
- Guiding standards
- Uniquely integrating privacy issues
- Synergy between WUSTL & region
Center for Security Technologies

International Scientific and Engineering Resource