Alternating Minimization Algorithms for X-Ray CT Imaging

Joseph A. O'Sullivan

Electronic Systems and Signals Research Laboratory Department of Electrical and Systems Engineering Washington University

jao@wustl.edu

http://essrl.wustl.edu/~jao Presented to VCU University Radiation Oncology, March 31, 2004.

Supported by: NIH grant R01CA75371 from the National Cancer Institute (J. F. Williamson, VCU, PI).

Collaborators

Faculty

Students

Donald L. SnyderRyanJeffrey F. Williamson, VCUJasenBruce R. WhitingShenyDavid G. PolitteOrvillG. James BlaineImage: State of the sta

Ryan Murphy Jasenka Benac Shenyu Yan Orville Earl

Outline

- X-Ray CT
 - Transmission Tomography
 - Maximum Likelihood Viewpoint
 - General Problem
- Alternating Minimization Algorithms
 - Information Geometry
 - Projections of I-Divergence
- X-Ray CT
 - Phantom Experiments
 - Physical Considerations
 - Extensions
- Conclusions

Outline

- X-Ray CT
 - Transmission Tomography
 - Maximum Likelihood Viewpoint
 - General Problem
- Alternating Minimization Algorithms
 - Information Geometry
 - Projections of I-Divergence
- X-Ray CT
 - Phantom Experiments
 - Physical Considerations
 - Extensions
- Conclusions

CT Imaging in Presence of High Density Attenuators

Brachytherapy applicators After-loading colpostats for radiation oncology

Cervical cancer: 50% survival rate Dose prediction important

Object-Constrained Computed Tomography (OCCT)

J. A. O'Sullivan, VCU, 03/31/2004

Filtered Back Projection

FBP: inverse Radon transform

Transmission Tomography

- Source-detector pairs indexed by y; pixels indexed by x
- Data d(y) Poisson, means g(y:µ), log likelihood function

$$l(d \mid g(\cdot : \mu)) = \sum_{y \in \mathbf{Y}} d(y) \ln g(y : \mu) - g(y : \mu)$$

$$g(y:\mu) = \sum_{E} I_0(y,E) \exp\left(-\sum_{x\in\mathsf{X}} h(y,x)\mu(x,E)\right) + \beta(y)$$

- Mean unattenuated counts *I_o*, mean background β
- Attenuation function $\mu(x, E)$, *E* energies

$$\mu(x, E) = \sum_{i=1}^{I} c_i(x) \mu_i(E)$$

Maximize over μ or c_i; equivalently minimize I-divergence

Maximum-Likelihood → Minimum I-divergence

Poisson distribution

$$P(N=k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

 Poisson distributed data → loglikelihood function

$$\ln P(N=k) = k \ln \lambda - \lambda - \ln k!$$

$$I(k \parallel \lambda) = k \ln \frac{k}{\lambda} - k + \lambda$$

 Maximization over μ equivalent to minimization of I-divergence

$$l(d \mid g(\cdot; \mu)) = \sum_{y \in \mathsf{Y}} d(y) \ln g(y; \mu) - g(y; \mu)$$
$$I(d \mid \mid g(\cdot; \mu)) = \sum_{y \in \mathsf{Y}} d(y) \ln \frac{d(y)}{g(y; \mu)} - d(y) + g(y; \mu)$$

$$g(y:\mu) = \sum_{E} I_0(y,E) \exp\left(-\sum_{x\in\mathsf{X}} h(y,x)\mu(x,E)\right) + \beta(y)$$
8

Maximum Likelihood → Minimum I-Divergence

$$\begin{split} &l(d \mid g(\cdot; \mu)) = \sum_{y \in \mathsf{Y}} d(y) \ln g(y; \mu) - g(y; \mu) \\ &I(d \mid |g(\cdot; \mu)) = \sum_{y \in \mathsf{Y}} d(y) \ln \frac{d(y)}{g(y; \mu)} - d(y) + g(y; \mu) \\ &g(y; \mu) = \sum_{E} I_0(y, E) \exp\left(-\sum_{x \in \mathsf{X}} h(y, x) \sum_{i=1}^{I} c_i(x) \mu_i(E)\right) + \beta(y) \end{split}$$

Difficulties: log of sum, sums in exponent

Outline

- X-Ray CT
 - Transmission Tomography
 - Maximum Likelihood Viewpoint
 - General Problem

Alternating Minimization Algorithms

- Information Geometry
- Projections of I-Divergence
- X-Ray CT
 - Phantom Experiments
 - Physical Considerations
 - Extensions
- Conclusions

Information Geometry: Properties of I-Divergence

$$I(p || q) = \sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}} - p_{i} + q_{i}$$

- I-divergence is nonnegative, convex in pair (p,q)
- Generalization of relative entropy; not symmetric; example of f-divergence (Csiszár)
- Let *P* be a probability matrix. Then $I(Pp || Pq) \le I(p || q)$
- First projection property

$$A = \sum_{i} p_{i} \quad B = \sum_{i} q_{i}$$

 $I(p \parallel q) = I(A \parallel B) + AI(p / A \parallel q / B)$

AM Algorithms for X-Ray

1

Variational Representations

Convex Decomposition Lemma.

$$\ln\left(\sum_{i} q_{i}\right) = -\min_{p \in \mathsf{P}} \sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}}$$
$$\mathsf{P} = \left\{p : p_{i} \ge 0, \sum_{i} p_{i} = 1\right\}$$

• Basis for EM; see also De Pierro, Lange, Fessler

$$\ln\left[g(y:\mu)\right] = \ln\left[\sum_{E} I_0(y,E) \exp\left(-\sum_{x\in\mathsf{X}} h(y,x) \sum_{i=1}^{I} c_i(x)\mu_i(E)\right)\right]$$
$$= \min_{p\in\mathsf{L}} \sum_{E} p(y,E) \ln\frac{p(y,E)}{q(y,E)}$$
$$q(y,E) = I_0(y,E) \exp\left(-\sum_{x\in\mathsf{X}} h(y,x) \sum_{i=1}^{I} c_i(x)\mu_i(E)\right)$$

Information Geometry: Projections Using I-Divergence

Define the linear family

$$\mathsf{L}(A,b) = \left\{ p \in \mathfrak{R}^n_+ : Ap = b \right\}$$

• Theorem. Suppose that q and L are given. Let p^* in L achieve $p^* = \underset{p \in L(A,b)}{\operatorname{arg\,min}} I(p || q)$

then for all *p* in L $I(p || q) = I(p || p^*) + I(p^* || q)$

Information Geometry: Projections Using I-Divergence

Define the exponential family

$$\mathsf{E}(\pi, B) = \left\{ q \in \mathfrak{R}^n_+ : q_i = \pi_i \exp\left(\sum_k b_{ki} \nu_k\right), \text{ for some } \nu \right\}$$

 Theorem. Suppose that p and E are given. Let q* in E achieve

$$q^* = \underset{q \in \mathsf{E}(\pi, B)}{\operatorname{arg\,min}} I(p \parallel q)$$

• then for all *q* in *E*, $I(p || q) = I(p || q^*) + I(q^* || q)$

Comment on Proofs

Duality Theorem: the two problems below are (Fenchel) dual, with solutions $q^* = p^*$.

> min $I(d \parallel q)$ $q \in \mathsf{E}(\pi, B)$ $\min_{p \in \mathsf{L}(B^{T}, B^{T}d)} I(p \| \pi)$

The resulting values of the objective functions satisfy $I(d || \pi) = I(d || q^*) + I(q^* || \pi)$

More Information Geometry...

- Shun-ichi Amari, Imre Csiszár
- Two types of information geodesics:
 - Linear, m-projections
 - Exponential, e-projections
- Differential geometry on manifold of probability density functions
- Fisher Information is the Riemannian metric
- Exponential family \rightarrow e-flat manifold \rightarrow dually flat Riemannian space
- Dual parameterization: mean and exponential family parameter

Alternating Minimization Algorithms

- Define problem as $\min_q \phi(q)$
- Derive variational representation: $\phi(q) = \min_{p} J(p,q)$
- J is an auxiliary function; p is in auxiliary set P
- Result: double minimization min_q min_p J(p,q)
- Alternating minimization algorithm

$$p^{(l+1)} = \underset{p \in P}{\operatorname{arg min}} J(p, q^{(l)})$$
$$q^{(l+1)} = \underset{q \in Q}{\operatorname{arg min}} J(p^{(l+1)}, q)$$

Comments: Guaranteed Monotonicity; J selected carefully

Alternating Minimization Algorithms: I-Divergence, Linear, Exponential Families

- Special Case of Interest: J is I-divergence
- Families of Interest: Linear Family L(A,b) = {p: Ap = b} Exponential Family E(π,B) = {q: q_i = π_i exp[Σ_j b_{ij} v_j]}

$$p^{(l+1)} = \underset{p \in L(A,b)}{\operatorname{arg\,min}} I(p \| q^{(l)})$$

$$q^{(l+1)} = \underset{q \in \mathsf{E}(\pi, B)}{\arg\min} I(p^{(l+1)} || q)$$

Csiszár and Tusnády; Dempster, Laird, Rubin; Blahut; Richardson; Lucy; Vardi, Shepp, and Kaufman; Cover; Miller and Snyder; O'Sullivan

Alternating Minimization Example

- Linear family: $p_1 + 2 p_2 = 2$
- Exponential family: $q_1 = \exp(v)$, $q_2 = \exp(-v)$

 $\min_{q \in E} \min_{p \in L} I(p \parallel q)$

Alternating Minimization Algorithms

Projections and triangle equality

$$I(p^{(l)} \| q^{(l)}) = I(p^{(l)} \| p^{(l+1)}) + I(p^{(l+1)} \| q^{(l)})$$
$$I(p^{(l+1)} \| q^{(l)}) = I(p^{(l+1)} \| q^{(l+1)}) + I(q^{(l+1)} \| q^{(l)})$$

Bounded sums (depending on initial condition)

$$\sum_{l=1}^{\infty} I(p^{(l)} || p^{(l+1)})$$
$$\sum_{l=1}^{\infty} I(q^{(l+1)} || q^{(l)})$$

Monotonicity; limit points exist, form connected set

New Alternating Minimization Algorithm for Transmission Tomography

$$\begin{split} \min_{q} \min_{p \in \mathsf{L}} I(p \parallel q) &= \sum_{y \in \mathsf{Y}} \sum_{E} p(y, E) \ln \frac{p(y, E)}{q(y, E)} - p(y, E) + q(y, E) \\ q(y, E) &= I_0(y, E) \exp \left(-\sum_{x \in \mathsf{X}} h(y, x) \sum_{i=1}^{I} c_i(x) \mu_i(E) \right) \\ \mathsf{L} &= \left\{ p(y, E) : \sum_{E} p(y, E) = d(y) \right\} \end{split}$$

Data determine the linear family Exponential family parameters are image(s)

Alternating Minimization Algorithm Image update

$$\hat{c}_i^{(l+1)}(x) = \hat{c}_i^{(l)}(x) - \frac{1}{Z_i(x)} \ln \frac{\tilde{b}_i^{(l)}(x)}{\hat{b}_i^{(l)}(x)}$$

Interpretation:

- compare predicted data to measured data via ratio of backprojections
- update estimate using a normalization constant

$$\widetilde{b}_{i}^{(l)}(x) = \sum_{y} \sum_{E} \mu_{i}(E)h(y,x)\hat{p}^{(l)}(y,E)$$
$$\hat{b}_{i}^{(l)}(x) = \sum_{y} \sum_{E} \mu_{i}(E)h(y,x)\hat{q}^{(l)}(y,E)$$

Alternating Minimization Algorithm Image update

$$\hat{c}_i^{(l+1)}(x) = \hat{c}_i^{(l)}(x) - \frac{1}{Z_i(x)} \ln \frac{\tilde{b}_i^{(l)}(x)}{\hat{b}_i^{(l)}(x)}$$

Interpretation:

- compare predicted data to measured data via ratio of backprojections
- update estimate using a normalization constant Comments:
- choice for constants
- monotonic convergence
- constraints easily incorporated
- computationally expensive:

N forward, 2 N backward projections per iteration

Derivation of Iterations

$$\begin{split} \min_{q} \min_{p \in L} I(p \parallel q) &= \sum_{y \in Y} \sum_{E} p(y, E) \ln \frac{p(y, E)}{q(y, E)} - p(y, E) + q(y, E) \\ q(y, E) &= I_0(y, E) \exp\left(-\sum_{x \in X} h(y, x) \sum_{i=1}^{I} c_i(x) \frac{Z_i(x)}{Z_i(x)} \mu_i(E)\right) \leq \\ I_0(y, E) \exp\left(-\sum_{x \in X} h(y, x) \sum_{i=1}^{I} c_i^{(k)}(x) \mu_i(E)\right) \sum_{x \in X} \sum_{i=1}^{I} \frac{h(y, x) \mu_i(E)}{Z_i(x)} \exp\left(-Z_i(x) \Delta c_i^{(k+1)}(x)\right) \\ I(p^{(k)} \parallel q) &\leq \sum_{x \in X} \sum_{i=1}^{I} \widetilde{b}_i(x) \left[c_i^{(k)}(x) + \Delta c_i^{(k+1)}(x) \right] + \hat{b}_i(x) \frac{1}{Z_i(x)} \exp\left(-Z_i(x) \Delta c_i^{(k+1)}(x)\right) \\ &+ \text{other terms} \end{split}$$

Outline

- X-Ray CT
 - Transmission Tomography
 - Maximum Likelihood Viewpoint
 - General Problem
- Alternating Minimization Algorithms
 - Information Geometry
 - Projections of I-Divergence
- X-Ray CT
 - Phantom Experiments
 - Physical Considerations
 - Extensions
- Conclusions

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² **10⁻² 1** 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10⁰ 10² 10⁴ 10⁶ **10**¹ Iteration Number David G. Politte

October 31, 2002

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² **10⁻² 1** 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10⁰ 10² 10⁴ 10⁶ **10**¹ Iteration Number David G. Politte

October 31, 2002

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² **10⁻² 1** 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10² 10⁴ 10⁶ 10⁰ **10**¹ Iteration Number David G. Politte

No Ordered Subsets

22 Ordered Subsets

132 Ordered Subsets

No Ordered Subsets

22 Ordered Subsets

132 Ordered Subsets

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² 10⁻⁴ 10⁻², 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10² 10⁴ 10⁶ 10⁰ **10**¹ Iteration Number David G. Politte October 31, 2002

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² 10⁻⁴ 10⁻², 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10² 10⁴ 10⁶ 10⁰ **10**¹ Iteration Number David G. Politte October 31, 2002

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² 10⁻⁴ **′ 10^{−2} ⊦** 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10⁰ 10² 10⁴ 10¹

Iteration Number

No Ordered Subsets 22 Ordered Subsets 132 Ordered Subsets 10⁴ 10² e 10⁰ 10⁻² 10⁻² 10⁻², 10⁻⁶ 10⁻⁸ 10³ 10⁵ 10⁰ 10² 10⁴ 10⁶ **10**¹ Iteration Number David G. Politte October 31, 2002

Iterative Algorithm with Known Applicator Pose

J. A. O'Sullivan, VCU, 03/31/2004

OCCT Iterations

OCCT

J. A. O'Sullivan, VCU, 03/31/2004

J. A. O'Sullivan, VCU, 03/31/2004

Magnified views around brachytherapy applicator

Additional Algorithm/Detector Model Development

- Regularization
- Energy integrating detectors $\int EdN(y, E)$
- Finite detector size, better source model
- Finite pixel, voxel size
- Average integral or average exponential (arithmetic vs. geometric average)
- Partial volume effects
- Motion
- Scattering
- Limited angle tomography
- Region of interest
- Scanner implementations: beam hardening correction, sampling, etc.

Real Data Experiments & Considerations of Region-of-Interest Tomography

LOW DENSITY ROD PHANTOM

(DLS, R. Murphy, 06/25/03)

Rods are: Air Teflon Water Aluminum

J. A. O'Sullivan, VCU, 03/31/2004

Real data reconstruction Replace rod projection via masking

50 it (22 OS)

500 it (22 OS)

200 it (22 OS)

Method 2—(replace with q(y))

I.C. just rods

I.C. water + rods

Method 1— (replace with 0)

Data reconstruction w/ pose search

Precorrected real data

Uses correct attenuation values

Uses incorrect attenuation values

AM performance with multicomponent tissue model

Data means:

$$g(y) = \sum_{E} I_0(y, E) \exp\left[-\sum_{X} h(y|x(\mu(x, E)) + \beta(y))\right]$$
$$\mu(x, E) = \sum_{i=1}^{I} \mu_i(E) c_i(x)$$

 $\mu_i(\mathbf{E})$ – linear attenuation coefficient [mm⁻¹] $c_i(\mathbf{x})$ – specific gravity [unitless]

AM update step:
$$\hat{c}_{i}^{(k+1)} = \hat{c}_{i}^{(k+1)}(x) - \frac{1}{Z_{i}(x)} \ln \left(\frac{\tilde{b}_{i}^{(k)}(x)}{\hat{b}_{i}^{(k)}(x)} \right)$$

Multi-component experiment setup

	Substance	True $c_{\underline{1}}(x)$	True $c_{\underline{2}}(x)$
	Water	0.9036	0.1357
	Lucite	1.14	0.0583
	Muscle	0.9399	0.1390
	Ethanol	0.7999	0.0337
	Teflon	1.4194	0.4878
	Х	0.0300	2.8613
$\mu_1(E)$ – Styrene		Jucerto	
$\mu_2(E)$ – Ca Chlori	de	11150115	

J. A. O'Sullivan, VCU, 03/31/2004

Multi-component experiment setup

True $c_1(x)$

True $c_2(x)$

$$g(y) = \sum_{E} I_0(y, E) \exp\left[-\sum_{X} h(y|x)\mu(x, E)\right] + \beta(y)$$

59

J. A. O'Sullivan, VCU, 03/31/2004

AM performance with multi-component tissue model

AM reconstructed images

100 iterations (22OS)

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

AM performance with multi-component tissue model

61

J. A. O'Sullivan, VCU, 03/31/2004

Dual Energy AM Algorithm

J. A. O'Sullivan, VCU, 03/31/2004

Alternative Dual Energy methods

Basis Vector Model (BVM)* → ESSRL Implementation

reconstructed $\begin{bmatrix} \mu_x^{(1)} \\ \mu_x^{(2)} \\ \mu_x^{(2)} \end{bmatrix} = \begin{bmatrix} \mu_1^{(1)} & \mu_2^{(1)} \\ \mu_1^{(2)} & \mu_2^{(2)} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ unknown coefficients pre-computed

Calibration phantom:

- 2 water
- styrene
- CaCl₂

*On Two-Parameter Representations of Photon Cross Sections: Application to Dual Energy CT imaging, Williamson, et al.

J. A. O'Sullivan, VCU, 03/31/2004

AMDE experiment results

J. A. O'Sullivan, VCU, 03/31/2004

AMDE experiment results

J. A. O'Sullivan, VCU, 03/31/2004

AMDE experiment results

AMDE experiment results

Relative error vs. iteration

AMDE experiment results

Cost function vs. iteration

Alternative Method experiment results

Data with noise AMDE results

1000 (22OS) iterations

Data with noise Alternative method results

73

- X-Ray CT Imaging
- Likelihood Problem Formulation
- Information Geometry
- Alternating Minimization Algorithms
- Recent Progress: Limited Angle Tomography
- In Progress: 3D, Increased Convergence Rate, Dual Energy

AM Algorithms for X-Ray

Increased Convergence Rates

Ordered subsets

– Hudson and Larkin; Kamphuis and Beekman; etc.

- Separable Parabaloidal Surrogate functions
 - Fessler, et al.
- Multigrid Methods
 - Bouman, et al., 2001-2003
- Fast forward/backward projections
 - Bresler, et al.
- Other (see Sotthivirat, Ahn, Fessler, 2001-2003)

Multigrid Approach Oh, Milstein, Bouman, Webb, et al.

- Objective functions at multiple grids
- Surrogate function view: match value and gradient at current estimate

$$\left. \operatorname{cost}^{(m+1)}(x^{(m+1)}) \right|_{x^{(m+1)} = J_m^{m+1} x^{(m)}} = \operatorname{cost}^{(m)}(x^{(m)})$$
$$\left. \nabla \operatorname{cost}^{(m+1)}(x^{(m+1)}) \right|_{x^{(m+1)} = J_m^{m+1} x^{(m)}} = \nabla \operatorname{cost}^{(m)}(x^{(m)}) J_{m+1}^m$$

 Our implementations: little speedup; not matched to AM approach (not monotonic); negative values in estimates inside of logarithms

Multigrid AM Algorithm

Approach: compute image correction, $\Delta c(x)$, on coarse grid using AM

$$c(x) = c_{[0]}(x) + \Delta c(x)$$
$$\Delta c(x) = J_m^0 \Delta c_{[m]}(x)$$

$$m = 0$$
 Fine grid
 J_m^0 Interpolating
operator

Multigrid AM Algorithm

$$\min_{q} \min_{p \in \mathcal{L}} I(p \parallel q) = \sum_{y \in Y} \sum_{E} p(y, E) \ln \frac{p(y, E)}{q(y, E)} - p(y, E) + q(y, E)$$
$$q(y, E) = I_0(y, E) \exp\left(-\sum_{x \in X} h(y, x) \sum_{i=1}^N \mu_i(E) \left[c_{i,[0]}(x) + J_m^0 \Delta c_{i,[m]}(x)\right]\right)$$

Comments:

- monotonicity guaranteed
- faster computations on coarser grids
- flexible grid sequence

Multigrid AM Algorithm Iteration overview

On each grid m, run K_m iterations:

$$\hat{\Delta}c_{[m]}^{(k_m+1)}(x) = \hat{\Delta}c_{[m]}^{(k_m)}(x) - \frac{1}{Z_m(x)} \ln\left(\frac{b_m(x)}{\hat{b}_{[m]}^{(k_m)}(x)}\right), \quad k_m = 0, \text{K}, K_m - 1$$

$$b_{[m]}(x) = \sum_{y} d(y)h(y, x)J_m^0$$

$$\hat{b}_{[m]}^{(k_m)}(x) = \sum_{y} \hat{q}^{(k)}(y) \exp\left(-\sum_{x'} h(y, x')J_m^0 \hat{\Delta}c_{[m]}^{(k_m)}(x')\right)h(y, x)J_m^0$$

$$\hat{q}^{(k)}(y) = I_0(y) \exp\left(-\sum_{x} h(y, x)\hat{c}^{(k)}(x)\right)$$

Fine grid image update: $\hat{c}^{(k+1)}(x) = \hat{c}^{(k)}(x) + J_m^0 \hat{\Delta} c_{[m]}^{(K_m)}(x)$

AM Algorithms for X-Ray

J. A. O'Sullivan, VCU, 03/31/2004

Preliminary Results

Simulated data:

- Lucite core in water bath with four metallic inserts
- 4 grid levels
- Interpolation average of four neighbors

Comment: potential mismatch in projection operators

Conclusions and Future Work

Multigrid Alternating Minimization Algorithm

- potential for increasing convergence rate of single grid AM
- guaranteed monotonic convergence properties

Future analysis

- Decimation operators in image space
- Incorporate decimation in measurement space
- Ordered subsets and multigrid combined

References

- J. A. O'Sullivan and J. Benac, "Alternating minimization algorithms for transmission tomography," submitted to *IEEE Trans. Med. Img*.
- S. Oh, B. Milstein, C. A. Bouman, K. J. Webb, "Adaptive nonlinear multigrid inversion with applications to Bayesian optical diffusion tomography," in *Proc. IEEE Stat. Signal Processing Workshop*, 2003
- T.-S. Pan, A. E. Yagle, "Numerical study of multigrid implementations of some iterative image reconstruction algorithms," in *Proc. IEEE Nuclear Sci. Symposium and Med. Img. Conference*, 1991.
- Z. Wu, A. H. Tewfik, "Multigrid algorithm for image reconstruction from Fourier modulus," in *Proc. ICASSP*, 1991.